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Abstract: 

 

Due to global environmental concerns, plug-in hybrid electric vehicles (PHEVs) are expected to become 

more prevalent. In order to avoid overloading the power supply system and to use PHEV recharging to 

reduce power fluctuations, smart charging strategies could be very useful. 

 

This thesis introduces a method for allocating available power to the connected PHEVs through a charging 

function. To obtain insight on the problem of power allocation, the form and parameters of the charging 

function were modified and the effect on the electric kilometers (objective function to be maximized) was 

checked. All results were obtained in a simulated environment, using Helsinki as a case. 

 

The results indicate that it is usually a good strategy to allocate more charging power for vehicles that have 

low state of charge (SOC) and low battery capacity. 

 

Obtaining an accurate prediction for the amount of time a PHEV will stay at its current location provides 

more electric kilometers than an accurate prediction for the amount of kilometers the PHEV will travel 

before reconnecting with the grid. It is possible to safeguard against inaccurate predictions by using a linear 

combination of the prediction and the observed average. 

 

When there is a sufficient correlation between travelled distance and battery capacity, the effectiveness of 

our strategies diminishes, rendering them almost redundant. The effectiveness of any strategy is linked to the 

battery capacity. With too low and too high capacities, the strategies are redundant. 

 

This thesis also introduces a method for generating nearly arbitrary charging load profiles for night-time 

home recharging, the weighted random recharging (WRR). It was shown that with traffic electrification of 

39 % and under certain simplifying assumptions, the yearly standard deviation of power consumption could 

be reduced by 6.3 % while reducing the daily standard deviation by 61 % on average. 
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Maailmanlaajuisten ympäristöongelmien uhan vuoksi on odotettavissa, että plug-in 

hybridisähköajoneuvojen (PHEV) määrä tulee lisääntymään. Välttääksemme sähköjärjestelmämme 

ylikuormittamisen ja jopa hyötyäksemme sähköajoneuvojen latauskuormasta pienentämällä tehonkulutuksen 

vaihtelua älykkäät latausstrategiat voivat osoittautua hyödyllisiksi. 

 

Tämä diplomityö esittelee latausfunktion, menetelmän tehon jakamiselle sähköverkkoon kytketyille autoille. 

Yritimme ymmärtää tehon jakamisen ongelmaa kokeilemalla erilaisia muotoja tälle funktiolle ja 

selvittämällä, miten ajettujen sähkökilometrien määrä, maksimoitavan kohdefunktiomme arvo, muuttui. 

Kaikki tuloksemme saavutettiin simuloidussa ympäristössä Helsinkiä edustavassa noodiverkostossa. 

 

Tuloksemme viittaavat siihen, että on tavallisesti hyvä strategia antaa enemmän lataustehoa niille 

ajoneuvoille, joiden normalisoitu lataustaso (SOC) ja kapasiteetti ovat matalia. 

 

Tarkan ennusteen saaminen sille ajalle, minkä ajoneuvo viettää nykyisessä sijainnissaan tuottaa enemmän 

sähkökilometrejä kuin tarkka ennuste sille matkalle, minkä ajoneuvo kulkee ennen liittymistään takaisin 

sähköverkkoon. Huonoja ennusteita vastaan voidaan suojautua käyttämällä ennusteen ja havaitun keskiarvon 

yhdistelmää. 

 

Kun kuljetun matkan ja akkukapasiteetin välillä on riittävä korrelaatio, käyttämiemme strategioiden vaikutus 

pieneni tehden niistä lähes tarpeettomia. Minkä tahansa strategian vaikutus riippuu akkukapasiteetista. Liian 

pienillä ja liian suurilla kapasiteeteilla strategiat ovat tarpeettomia. 

 

Tämä diplomityö esittelee myös menetelmän lähes mielivaltaisten latauskuormaprofiilien muodostamiselle, 

painotetun satunnaislatauksen (WRR). Näytämme, että liikenteen sähköistämisprosentin ollessa 39 ja 

tiettyjen yksinkertaistavien oletusten voimassaollessa voidaan vuosittaista sähkönkulutuksen keskihajontaa 

pienentää 6.3 % päivittäisen keskihajonnan pienentyessä keskimäärin 61 %. 
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Nomenclature

c Electricity consumption of a PHEV (kWh/km)
di j Distance between nodes i and j (km)
dt Length of the timestep (s)
e i Energy allocated to car i (kWh)
f i Fed-up factor of car i
m Recharge time (min)
p Power factor (kW), electrification percentage
r Random number
si j Score of node i relative to node j (km−1)
t Time (s), timestep
tmid Recharging interval midpoint
tPP Peak position
w Preference of prediction versus observed average
x Normalized SOC
y Capacity (kWh)
ŷ The largest capacity (kWh)
z Charging function
A i Attraction function of node i
D Prediction for next free distance (km), energy deficit (kWh)
D0 Exactly known next free distance (km)
E Energy (kWh)
E i Available energy at node i (kWh)
Ě Required energy (kWh)
Fi Fed-up function of node i
N Number of PHEVs
Ni Amount of inhabitants at node i
Pi Total recharging power at node i (kW)
P Maximum charging power supported by battery (kW)
T Prediction for stationary time
T0 Exactly known stationary time
W Weight vector
Wi Weight of car i

α Weight of SOC, weight of energy, weight of SOC deficit
β Weight of capacity, weight of required energy
γ Weight of stationary time
δ Error in prediction
εD Scaled error in the prediction for next free distance
εT Scaled error in the prediction for stationary time
η Weight of capacity
λ Weight of SOC
σD Scaling constant for next free distance prediction error
σP Scaling constant
σT Scaling constant for stationary time prediction error
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Abbreviations
DCC Distance-capacity correlation. If DCC is included, cars that travel

greater distances have bigger battery capacity. See section 5.1.4.

EDS Each-day-separately, see section 6.2.1.

FWHM Full width at half maximum.

ICE Internal combustion engine.

NSCI Null-strategy capacity increase. See null-strategy capacity.

SOC State of charge of a battery i.e. the amount of electric energy that is
stored in a battery. This can also mean normalized SOC, where num-
ber 1 refers to a fully recharged battery and 0 to a fully discharged
battery. In this thesis, we mainly use the term SOC to refer to the
normalized SOC 1.

WRR See weighted random recharging.

WY1 Whole-year-at-once, see section 6.2.1.

Terminology
Throughout this thesis, we will use the terms car, vehicle and PHEV inter-
changeably.

bandwidth The magnitude of the power that can be used for recharging a
single car or a group of cars.

big factor When two different battery capacities are used, this is the frac-
tion of the cars that have the larger battery capacity.

free distance The distance a car travels between two different charging
sessions.

high-priority car A car that should be given more bandwidth in an intel-
ligent charging strategy.

low-priority car A car that should be given less bandwidth in an intelli-
gent charging strategy.

null-strategy The charging strategy with no intelligence. This strategy
attempts to allocate the available bandwidth to all connected cars
equally.

null-strategy capacity See section 3.4.2.

smart charging Intelligent allocating of charging bandwidth for cars or
groups of cars.

1If the battery has an operating range, the normalization is assumed to be relative to the
operating range so that a battery that has energy 1 kWh stored, but does not allow discharging
below this level, is considered to have SOC of 0.
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stationary time The remaining time the car will stay at its current loca-
tion.

weighted random recharging See section 6.1.

working day A day that is not Saturday or Sunday.

If some amount of electric energy is not used to move a vehicle during a
simulation, and it could have been used to move another vehicle using some
other charging strategy, it is called wasted.

When the charging power of some car or a group of cars A is limited
due to some other car or a group of cars B having more charging power, for
example due to favoring in smart charging, we say that B is hogging the
bandwidth with respect to A.
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1 Introduction
One of the greatest current challenges faced by mankind is the struggle
against anthropogenic climate change, the worldwide increase in average
temperature that threatens to cause irreversible and chaotic changes to
the environment.

In order to counteract global warming, it is widely believed that severe
reductions in greenhouse gas emissions are required. A major factor in
these emissions is the transport sector, which is responsible for around 25 %
of worldwide CO2 emissions, 75 % of this being attributable to cars and
trucks [1]. With countries around the world signing environmental treaties
and the natural oil reserves running dry, it seems that there is need for a
revolution in the powertrain. One such revolution is offered by the electric
vehicle, which enables utilizing alternative energy sources for providing the
power needed for transportation.

The path to electrification of transportation is not free of obstacles. A
major impediment is the relatively long recharge time of the battery due to
limiting factors in the battery chemistry and power supply. Another draw-
back is the low energy density of a PHEV battery, which is two orders of
magnitude lower than that of gasoline [2][3]. This, in turn limits either the
range of the cars due to the capacity being insufficient or the amount of
passengers on the car due to having too much space occupied by batteries2.

An intermediate stage could be necessary. The plug-in hybrid electric
vehicle, PHEV, is a vehicle that combines the benefits of the electric vehicle
and the long range and rapid refueling time of the ICE vehicle. Unlike
the ordinary hybrid vehicle, the plug-in hybrid supports recharging from
the electric grid, which enables driving completely carbon-free, assuming
carbon-free electricity production.

The possible reductions in emissions is not the only benefit of a PHEV,
for the PHEV can also be used to provide positive and negative load to
the grid. For example, it is possible to use the recharging of PHEVs to
fill the night slump in the electric power consumption. This is beneficial,
because with a more uniform power consumption, there is no need to shut
down power plants or operate them outside their high-efficiency range. By
providing positive load, PHEVs can also be used to level power production
spikes caused by wind or solar power plants. Providing negative load i.e.
transferring power from the battery to the grid, can be used to provide
back-up power and to level negative production spikes.

Having a large number of PHEVs interacting with the electric grid pro-
vides its own challenges. It is highly unlikely that millions of PHEVs will
be allowed to recharge whenever they wish as this may cause massive load
spikes at points where the load is already high as it is, for example, when
returning home from work. There is need for intelligent charging strategies
that tell us when and how they are allowed to recharge.

The goal of this thesis is to study smart charging strategies using a sim-
ulation model for the movement and charging for PHEVs. We will search
for optimal ways to recharge the connected vehicles when the electric grid is

2In the case of a fully electric car, the effective energy density may be better than that of an
internal combustion engine (ICE) car. For hybrids, however, this is not the case, because they
need to accommodate both an ICE and an electric engine. [4]
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under heavy load, limiting the available power for recharging. If the power
is limited, it may be that there is not enough energy to fully recharge all
connected vehicles. Instead of allocating the available power equally, we
could favor some vehicles over others. This method could be used to in-
crease the total amount of kilometers driven using electricity, our objective
function. The main approach for adding intelligence to the recharging pro-
cess is the charging function, which tells how the available power should be
divided between the connected cars.

We also study a way of decreasing the fluctuation in the power consump-
tion by concentrating the recharging load to the night-time consumption
slump. For this, a method for generating almost arbitrary charging load
profiles during night-time home recharging is proposed.
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2 Background
Vehicle-to-grid, or V2G, is used to describe the situation where plug-in elec-
tric vehicles (PEV) communicate with the electric grid in order to provide
demand response services. An example of such a service is the throttling
of charging power at times of high base consumption and timing the charg-
ing to happen during the night, when the base consumption is high. It has
been calculated that grid overloading can be significantly reduced by smart
charging while satisfying the individual vehicle owner’s requirements [5].
Also, by using smart charging, the grid is able to support a larger share of
electric vehicles before the system’s technical restrictions are violated [6].

Kempton et al. (2005) have studied the feasibility of using PEVs to pro-
vide V2G services. They have suggested strategies and business models and
the steps that are necessary for the implementation of V2G [7][8]. There
has been a practical demonstration about the feasibility of using a PHEV to
provide ancillary services such as frequency regulation. The PHEV used in
the demonstration was custom-built with battery capacity of 35 kWh and
with power electronics designed for both driving and to allow for high-power
exchange with the grid. They concluded that electric vehicles are capable
of providing ancillary services [9].

Being capable of providing positive and negative load, V2G can be used
to balance intermittent power production. The applicability of V2G to re-
newable power production balancing in the case of wind power has been
studied in [10][11][8]. The conclusions were that PEVs can be used as a
means to regulate wind power.

Automotive manufacturers have also taken interest on V2G. Nissan,
Mitsubishi and Toyota are developing new devices for the Japanese mar-
ket that enable V2G for consumers [12]. Nissan’s Power Control System
allows the Nissan Leaf EV to feed 6 kW of electric power to home, which
is sufficient to satisfy the needs of an average Japanese residence for two
days. This system is expected to commercialize by October 2012 [13]. Mit-
subishi i-MiEV and Toyota Estima hybrid van were used after the March
2011 natural disaster to provide emergency electric power in affected com-
munities. Mitsubishi is hoping to put a V2G system to its coming crossover
PHEV, concept name PX-MiEV. Toyota is expected to add this functionality
to the 2012 Prius PHEV [12].

As for smart recharging, Su and Chow (2011) have studied an algorithm
for optimally managing a large number (500) of PHEVs charging at a mu-
nicipal charging station. The objective function was the average SOC for
all vehicles at the next timestep. They considered energy price, charging
time and current SOC [14].

Su and Chow (2011) have also proposed two smart charging scenarios.
In the first scenario, the energy required to fully recharge the battery is
evenly distributed over the period of expected parking time. In the second
scenario, the current price of electricity was employed to determine the
most cost-effective charging scenario on a per vehicle basis. They concluded
that these strategies can improve stability and reliability of the power grid
[15].

There have been studies with the optimization objective of minimizing
the overall cost of charging the EV fleet. See e.g. [5][16]. In [16], battery
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health degradation was also considered. Mets et al. (2010) [17] aimed to
minimize the peak load and flatten the overall load profile. Clement et al.
(2009) [18] optimized the charging by minimizing power losses.

Galus et al. (2011) [19] used a highly sophisticated agent-based trans-
portation simulation to obtain temporal and spatial information of PHEV
behavior, such as connection times and energy demands. These inputs were
then used in power systems simulations. The objective was maximizing the
sum of agent-specific utility functions, with power constraints. The utility
functions in turn model the utility gained from increased SOC, while ac-
counting for the price of gasoline and electricity. 15-minute timesteps were
used in the study.

In contrast, our traffic model and objective functions are relatively sim-
ple. Instead of using an agent-based utility approach with explicit energy
price considerations, we use a pooled utility objective, where the grid and
power supply limitations and the effect of energy price are both combined
to node-specific power limitations. To our knowledge, there are no other
works which have used an analytical function for the problem of optimal
power allocation. We are not aware of other studies that have used electric
kilometers as the objective function and ones that have used imperfect pre-
dictions for e.g. parking time and discussed how the increase of error in the
prediction relates to utility loss.

Algorithms for filling the night-slump have been proposed before. In a
study conducted by Gan et al. (2010) [20], the cars choose their own charg-
ing profiles based on control signals (e.g. prices) sent by the utility. In this
thesis, the charging process is centralized in the sense that the utility pro-
vides the midpoint for the charging interval. Our approach is arguably
simpler, but relies on randomness, which may render it impractical with
small numbers of vehicles.
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3 Methods
The effects of different charging strategies are studied using a PHEV move-
ment and charging simulation model developed in our research group. The
main assumptions behind the simulation are documented in this section.
The mechanics of the model itself along with additional assumptions are de-
scribed in section 4. These assumptions, along with the ones introduced in
section 4, will be used throughout this thesis unless otherwise mentioned.

3.1 Cars, battery, recharging and traffic
Each car in the simulation is a PHEV, so it is equipped with both a bat-
tery and a fuel tank. It is assumed that each car consumes 200 watt-hours
per kilometer and travels with the speed 60 km/h. After (and only after) the
car’s battery runs out, it begins depleting its fuel tank. Fuel consumption is
assumed equal for all cars. It is also assumed that the cars are fuelled suf-
ficiently, so that they cannot run out of gas during the simulation. Stopping
for refueling is not modelled.

Several different battery capacities will be used in the simulations per-
formed in this thesis. A linear model is assumed for the charging of the
battery. A study conducted by Sundström and Binding (2010) shows that
the error due to this approximation is small [5].

For simplicity, it is assumed that all vehicles will attempt to recharge
whenever they are stationed at a node that has charging sockets. It is also
assumed that there are enough charging sockets to allow all parked cars to
connect to the grid. All vehicles are assumed to have full SOC at the start
of the simulation due to the considerations in 4.5.4.

For simplicity, traffic congestion is not modelled in any way. In this sim-
ulation, a travelling car does not move on the roads connecting the nodes,
but occupies a special node called transit space, remains there for the time
corresponding to the time it would take to travel physically using the road
network, and then emerges at its destination.

3.2 Time period
A working day from 0:00 to 23:55 is simulated using five-minute timesteps.
Working days were chosen to be simulated because the main mechanics
of working days are well understood and almost unchanging. There is the
commute from home to work, the commute from work to home and for some
people, additional trips to shops and hobbies. The days of rest are less sys-
tematic in comparison. Due to the working days being in the majority and
their unchanging nature, only 1-2 consecutive days are simulated, which
saves computation time. Because the seasonal differences to the working
day mechanics are intuitively negligible, no assumptions are made about
the time of year.

3.3 Cross-battery energy transfer
It is assumed that there is no direct energy transfer between any two dif-
ferent cars. This means that no car may lower its energy level to increase
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another’s. This assumption has been made primarily for simplicity, but
there are also other reasons for not wanting to use this charging process.

One reason for disallowing cross-battery energy transfer is that energy
traffic causes wear to the participating battery [21]. If there is cross-battery
energy transfer, the total energy traffic is expected to increase, as those
batteries that transfer energy to other batteries may need to be recharged
later on. The utility gained using cross-battery energy transfer would thus
be offset by the need to replace the batteries earlier.

Cross-battery energy transfer also increases heat losses. Suppose that
the node has E amount of energy to dispense to a single car and that the
electrical-chemical energy conversion efficiency for all cars is ε< 1 (in both
directions). When recharging this car, the node loses E energy, but the
car gains only εE energy. If a fraction x of this energy is used to recharge
another car, the other car receives only xε3E, because there are two conver-
sions (chemical-to-electrical and electrical-to-chemical) on the way from the
first car to the other. Thus, when transmitting energy from the node to a
car to another car, the total energy gained by the second car is proportional
to ε3.

3.4 Measuring the quality of a strategy
In order to rank competing strategies, a simple way of condensing the mas-
sive amount of data produced in the simulation is required, preferably one
that produces a single scalar value. Two different gauges for measuring
the quality of a strategy are used in this thesis: electric kilometers and
null-strategy capacity increase (NSCI).

3.4.1 Electric kilometers

The amount of electric kilometers measures both the electrification of traf-
fic and the possible reduction in carbon dioxide emissions. The notion that
a kilometer has been driven using electricity instead of gasoline does not
imply that the carbon emissions have reduced. In fact, if the electricity is
produced using fossil fuels, the carbon emissions may increase [22]. By fo-
cusing on the electric kilometers and not carbon emissions reduction, there
is no need to make any assumptions on the way the energy is produced.

The problem with this gauge is that the electric kilometers are not al-
ways "equal". An electric kilometer driven by a car that has a high fuel
consumption reduces carbon emissions more than a kilometer driven by a
car that has a low fuel consumption, assuming carbon-free electricity pro-
duction. To negate this, we assumed that all vehicles have the same fuel
consumption.

3.4.2 Null-strategy capacity

If there is only one available battery capacity for the simulated cars, it is
possible to associate the electric kilometers with a certain capacity. Assum-
ing the same power limitations, for every electric kilometer gain e there
exists exactly one capacity augmentation that could increase the electric
kilometers by the same amount e when no charging strategy is used, and

9



Figure 1: Electric kilometers as a function of battery capacity using the null-
strategy. This curve is used in the conversion from electric kilometers to battery
capacity. A cubic spline (not shown) is used to interpolate between the measured
points (blue squares). Maximum power supported by a socket is 7.4 kW, home power
factor is infinite, work power factor is 0.1 kW. See section 4.5 for the definition of
the power factor.

vice versa. This increase in capacity is called the null-strategy capacity
increase, or NSCI.

"No charging strategy", or null-strategy, refers to the case where the
charging function z is constant, see section 3.4. With this strategy, the al-
gorithm attempts to distribute the available power evenly to the connected
cars. The curve used in this conversion is shown in Figure 1.
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Figure 2: Schematic of the model.

4 Simulation model
The MATLAB®-based model used in this thesis simulates the movement
and charging of PHEVs in a node network. The movement of the vehicles is
based on control functions, while the charging is governed by the charging
function. A schematic of the model is shown in Figure 2.

4.1 Control functions
There are two types of control functions: attraction functions and fed-up
functions. Both are one-dimensional functions of time. The attraction func-
tions are used to attract the cars to specific nodes at specific times and the
fed-up functions are used to determine when the car will leave its current
node.

4.1.1 Attraction functions

Attraction functions A(t)≥ 0 are node-specific functions of simulated time t
that are used to decide the car’s next destination. The attraction of node i
at time t is denoted by A i(t). This value is divided by the car’s distance to
the node di j, where j is the node the car is currently occupying, to obtain a
score si j:

si j := A i(t)
di j

(1)
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Because d j j = 0 by definition, the score for the node the car is occupying
is manually overridden to zero. Without this correction, the cars would
never leave their current node. These scores are calculated for all possible
candidates i.e. all nodes with nonzero attraction. The sum of these scores is
then scaled linearly to 1 (normalized) and a uniformly distributed random
number between 0 and 1 is used to select the destination3. The probability
of being chosen as the next destination is proportional to the normalized
score.

4.1.2 Fed-up functions and fed-up factors

Fed-up factor f ∈ [0,1] is a car-specific value which determines how soon the
car will leave its current node. A smaller fed-up factor implies that the car
will leave its node earlier. f is picked from a suitable distribution before
the simulation starts and each time the car leaves its current node. In this
thesis, f , is generated using the method explained in A.1.

Fed-up functions Fi(t̃) ∈ [0,1] are node-specific functions of occupation
time t̃ i.e. the time the car has spent at its current location. Because of
this, each car occupying the same node reads its own value of the fed-up
function. The value of the fed-up function for car c that has been stationed
at node i for t̃c timesteps, the current fed-up value of car c, is denoted by
Fi(t̃c). When this value is greater than or equal to the fed-up factor fc ∈ [0,1]
i.e. when

Fi(t̃c)≥ fc (2)

the car begins travelling to the next destination according to the attraction
functions. If there are no valid destination candidates (nodes with nonzero
attraction), the car will stay at the current node until there is a valid des-
tination, at which point the car will begin travel immediately. It should
be noted that a sensible fed-up function should be monotonously increas-
ing and should reach the value 1 at some point. The fed-up functions and
attraction functions used are shown in Figure 3.

4.1.3 Node types

Each node can have exactly one of five different types: home, workplace,
shopping, hobby and empty. Types are used to facilitate assignment of at-
traction and fed-up profiles: it is possible to simply flag a group of nodes as
workplace nodes, and then set the attraction profile of all workplace nodes
to be some function.

Another reason for using node types is that home and workplace nodes
are fixed; each car is given a single home and a workplace node. Home and
workplace nodes are special in the sense that each car is only attracted to its
own home and workplace nodes; the attraction of other home and workplace
nodes are always zero. However, several cars may share the same home and
workplace nodes. Shopping and hobby nodes are not given for any car and
these types of nodes will follow the standard rules mentioned above.

3Our simulation model uses Mersenne Twister [23], which is the default MATLAB® ran-
dom number generator at the time of writing.
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Figure 3: The control functions used in the simulations. Note that home attraction
is always positive. The attraction function for shopping nodes is the same as for
hobby nodes, the fed-up function for workplace nodes is the same as for home nodes
and the fed-up function for shopping nodes is the same as for hobby nodes.

Empty nodes are nodes that have no attraction. Thus, no car will ever
stop at an empty node. The empty nodes are used here to allow for more
freedom in the creation of the node network.

4.2 Charging function
The charging function is a function that allocates the available energy each
timestep between the cars connected to the grid. Because each node has its
own available energy E i, the charging function is evaluated separately for
each node. The inputs to the charging function can be practically anything,
for example the current SOC, capacity and a prediction for the amount of
time the car will stay at the node. The output is a nonnegative real-valued
vector W of size N×1, where N is the amount of cars connected to the node.
The element Wc of this vector equals the weight of the car c i.e. how much
this car is favored when allocating the energy. W is then scaled linearly so
that the sum of its elements is 1. After this, each car attempts to receive
energy

ec =WcE i (3)

If this energy cannot be received completely, for example due to battery
reaching full capacity, the total overflowed energy is reallocated between
the cars that are able to receive it using the charging function, but now
with updated input values. This process is repeated until there are no cars
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Figure 4: Helsinki node network used in the simulations.

left that can receive energy this timestep. At the next timestep, the weights
are recalculated, now with updated parameters from the previous timestep.

4.3 Node network and the amount of cars
The setting of the simulations is Helsinki. A node network that represents
an area of Helsinki was created, see Figure 4. The node types were chosen
so that they would reflect the actual activities in the area reasonably well.
The node types are shown in Figure 7.

After determining the node types, home nodes and workplace nodes
were assigned for each car. This process was loosely based on the popu-
lation and workplace data in [24]. The workplaces were assigned to each
car randomly; there is no correlation between the location of the home node
and the location of the workplace node. The amount of cars assigned to each
home and workplace nodes is shown in Figures 5 and 6 as spheres.

Before any simulations are possible, a decision must be made on the
amount of cars that will be simulated. Choosing a number too low results
in charging profiles and travel length histograms being coarse, while hav-
ing a large number of cars results in smoother profiles. Figures 8 and 9
show the cumulative travel histogram and the charging profiles with dif-
ferent amounts of simulated cars. In order to achieve greater prevalence,
the resulting curves should be smooth, but having a large number of cars
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Figure 5: The amount of cars assigned to each home node. This amount is pro-
portional to the area of the colored sphere on top of the home node. Three example
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Figure 7: Node types.

requires more computation time. We made a compromise between these
two objectives and chose to simulate 10 000 cars.

If the resulting charging profiles are reasonably smooth, it is possible
to obtain charging profiles for larger amount of cars by interpreting that a
single simulated car represents a fleet of a fixed number of cars and multi-
plying the profiles by the fleet size.

4.4 Resulting populations and time distributions
The chosen control functions yield the population profiles shown in Figure
11 and the travel length histogram shown in Figure 10. Total amount of
kilometers driven is 243 687, yielding 24.4 km per car on average. Note
that the total population does not equal 10 000 during all the timesteps.
This is because when the cars are moving i.e. occupying transit space, they
are not considered to be part of the population of any node.

Figure 12 shows the histogram for special events such as departure from
home and arrival at the workplace. There is a clearly visible spike in the
home leaving events at timestep 61. This is because there are cars with
fed-up values larger than the fed-up factor at the home nodes that have
no possible destination candidates due to the workplace attraction function
being zero until timestep 61.

Figure 13 shows how these special timesteps correlate with each other.
Note how the data points are divided in the subfigure showing the correla-
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Figure 8: Cumulative travel histogram with different amounts of simulated cars.
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Figure 9: Charging profiles divided by the amount of simulated cars. The left-
hand peak is due to workplace recharging and the right-hand peak due to home
recharging.

tion between work leaving time and home arrival time. The linearly shaped
cluster is generated by the cars that go straight home after work and the
other cluster by the cars that go to shopping and hobby nodes on the way
back. Also note that in the rightmost subfigure the home leaving time is
accumulated horizontally at the timestep 61.
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Figure 10: Travel distance histogram with 10 000 cars.
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Figure 11: Population by node type versus time.

4.5 Power limitation

During high power consumption, the PHEVs are expected to react by pro-
viding demand response. This demand response is modelled by imposing a
limitation to the vehicle recharging power. There are several different ways
to limit the amount of available power for recharging.
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Figure 12: Distribution for home/workplace leaving/arrival timesteps. Home leaving
timestep is the first timestep during which the car leaves its home node. Work arrival
timestep is the first timestep during which the car arrives to its workplace (if it arrives at
all). Work leaving timestep is the first timestep during which the car leaves its workplace
node. Home arrival timestep is the first timestep during which the car arrives to its home
node on the condition that it has occupied a different node during the previous timestep.
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Figure 13: Time correlations that result from our choice of control functions.

4.5.1 Total recharging power

An intuitive way of limiting the charging power is to set a limit to the
amount of total power a given node may dispense to the connected cars.
We assume that the power grid is built with a good knowledge of the loads
at different nodes so that workplace nodes that attract more PHEVs are
better equipped to dispense charging power i.e. they support larger total
charging power. This power limitation is carried out using a power factor p.
This means that the total recharging power given by a node i is limited to

Pi = p×Ni (4)

where Ni is the amount of inhabitants at node i. The amount of inhabitants
at home node i is equal to the amount of cars whose home has been set to
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node i, while the amount of inhabitants at workplace node j is equal to the
amount of cars whose workplace has been set to node j. Because of this, the
amount of inhabitants is defined only for home nodes and workplace nodes
and not for shopping and hobby nodes.

4.5.2 Charging socket

The power factors only limit the node’s total recharging power, not the
recharging power for individual cars or the charging sockets via which cars
are connected to the grid. This means that if there are no power limitations
for the cars or sockets, a single car at node i might recharge with power Pi,
which can be very (unrealistically) large. Therefore, it is assumed that the
power limitation for one socket is 7.4 kilowatts4. It is further assumed that
the efficiency of recharging is 0.9. This implies that no car may increase its
battery energy level faster than 6.66 kilowatts.

4.5.3 Battery

In addition to these two power limiters (node total and socket), it is pos-
sible to use a car-specific power limiter to model the maximum supported
recharging power of the battery. For now, however, we assume that each
battery supports infinite recharging power.

4.5.4 Home node recharging

The power in home nodes is not limited unless otherwise mentioned. Power
limitations are expected to be feasible mainly during the day, when the
base power consumption is high, and not during the night, when the base
consumption is low.

Importantly, when the home nodes support infinite total recharging pow-
er, all cars are likely to be fully recharged during the night. If the car is
occupying the home node for nine hours (Figure 11), it is capable of receiv-
ing 9 h × 6.66 kW ≈ 60 kWh of energy. Because the battery capacities that
will be used are much smaller than this, it can be safely assumed that each
car reaches maximum SOC at home. This enables beginning the simula-
tion with full SOC for each car while maintaining consistency. If the total
home recharging power is limited, there may be need to repeat the simula-
tion until the SOC’s converge, which would increase the computation time
considerably.

4.5.5 Shopping node and hobby node recharging

For simplicity, it is assumed that recharging is only possible at home and at
workplace. This is implemented by setting the socket power limiter in all
shopping and hobby nodes to 0 kW.

4230 volts at 32 amperes, alternating current.
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Figure 14: Charging profile with and without power limitation at workplace nodes.
The workplace power factor is infinite in the above picture and 0.1 kW in the below
picture.

4.5.6 Effect of power limitation

Figures 14 and 15 show the effect of this power limitation on the power con-
sumption profile and the integral of the consumption profile, respectively.
Note how, in the end of the simulated day, the total energy used in home
nodes is larger than the total energy used in workplace nodes. This follows
from the choice of the control functions as discussed in section 5. Also note
how the total energy used in the end of the day is larger in the non-throttled
case.

The effect of different workplace power factors and capacities on the
electric kilometers using the null-strategy is shown in Figure 16. It is seen
that the effect of increasing the power factor saturates at some point. This
is sensible, because the amount of electric kilometers cannot be increased
past the total kilometers travelled. This saturation also happens when in-
creasing the battery capacity, as was already seen in Figure 1. Note how the
power factor has less effect with very big and very small capacities. When
the batteries are sufficiently large, the cars do not need workplace charging
in order to avoid using fuel on the way home. If there is no fuel consump-
tion, there will be no difference in the electric kilometers. When the batter-
ies have small capacity, they will be able to recharge fully even with small
power factors. In this thesis, the workplace power factor of 0.1 kW is used
unless otherwise mentioned.
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Figure 15: Integral of the charging profile with and without power limitation at
workplace nodes. The workplace power factor is infinite in the above picture and
0.1 kW in the below picture.

Figure 16: The relationship between workplace power factor and capacity.
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5 Workplace charging
Different strategies for workplace charging are studied first. This section
has been divided into three subsections. In the first section, only the infor-
mation based on the current SOC and capacity of a battery is used. In the
second section, we additionally use information about the departure time
and the next free distance of the car. The second section therefore contains
predictions of the future, while the first one does not. The utility of having
charging strategies for the workplaces is studied in the final section. These
strategies have no effect at home nodes, because the power factor at home
nodes is infinite.

It should be noted that the length of the trip home is always greater than
or equal to the length of the trip to work. This is the result of the attraction
functions chosen: when the car leaves the home node in the morning, the
only possible destination is the workplace node, for only the workplace node
has a nonzero attraction. In the case of leaving the workplace node, shop-
ping and hobby nodes have nonzero attraction allowing the car to make a
"detour". Thus each packet of energy that is given to the cars recharging
at the workplace is used with 100 % probability on the way home. It is
therefore impossible to waste energy directly by recharging a car too much.
However, it is possible to waste energy indirectly by ignoring the fact that
some cars leave the node earlier than others i.e. not giving the energy to a
higher priority car.

5.1 Non-predictive strategies
The charging strategies in this section do not make any predictions about
the future, making only use of the current situation characterized by two
parameters: the SOC and capacity. Strategies based only on SOC are stud-
ied first. Capacity is then added to the charging functions to see its effect
on the results. In the case of different capacities, we study both the case
where there is no correlation between capacity and travelled distance and
the case where this correlation exists.

5.1.1 SOC-based strategies

Every PHEV or EV needs to know its current SOC in order to prevent dam-
age to the battery and therefore information about SOC is practically al-
ways available for all cars that are plugged in, assuming that the car is
able to communicate this information to the utility.

Three simple strategies are studied first, by using a charging function
of the form:

z1 = exp(αx) (5)

where x is the normalized SOC (real number between 0 and 1). The three
strategies are obtained by changing the value of the parameter α:

• α=−30: favor low-strategy

• α= 30: favor high-strategy
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• α= 0: null-strategy

For example, if α = −30, low-SOC cars will be favored over high-SOC cars,
because smaller x are penalized less by the charging function, thus giving
them more weight.

Figure 17 shows what kind of effect the strategies have on the SOC
curves and the kilometers travelled using electricity. Using the null-strategy,
the car represented by the thick green line, the "green car", is not recharged
sufficiently because its SOC drops to zero during timestep 221. This implies
that the car has to use fuel to cover the remaining distance. When the fa-
vor low-strategy is used, the green car receives more energy due to having
a lower SOC than the rest of the cars on the node. With this extra energy
the SOC of the green car never drops to zero. Actually, none of these SOC
curves drop to zero with this strategy. With the favor high-strategy, the
green car receives less energy than the other cars and produces more fuel
kilometers than with the null-strategy.

Favoring some cars over others may lead to the non-favored cars having
a lower SOC than with no favoring. This can be seen from the SOC of the
car represented by the thick light blue line, the "blue car": when comparing
the null-strategy and favor low-strategy, it is seen that favoring the green
car shifts the SOC curve of the blue car downwards. Also, if the green car is
not a high-priority car, it is possible to favor it excessively, generating more
fuel kilometers than in the case where a more sensible favoring is used.

5.1.2 Adding capacity

Information on the battery’s capacity is also almost always available. The
capacity is included into the previous strategy in two different ways: by
favoring the cars with high maximum capacity and penalizing the cars with
high maximum capacity.

In order for the addition of capacity to make sense, cars with different
battery capacities are required. This is done by randomly picking 25, 50 and
75 % from the total of 10 000 cars to have a battery capacity of 6 kWh, while
the rest of the cars will have 2 kWh batteries. Three different charging
functions are used:

z1 = exp(−30x)y
z2 = exp(−30x)/y
z3 = exp(−30x)

(6)

where x is as before and y the battery capacity in kWh. Note that we have
chosen to modify the favor low-strategy, for it seems the most promising.

The results are plotted in Figure 18. It seems that these strategies have
only a marginal effect on the electric kilometers. The biggest difference in
electric kilometers, 1034 km, occurred between strategies z2 and z1 when
50 % of the cars were 6 kWh.

It is natural to expect larger batteries to support higher charging power.
To see how this would affect the results, we assume that when there are no
power limitations, the shortest time for a battery to recharge from empty
to full is 30, 60, 120, 240 and 480 minutes and independent of battery size.

24



50 100 150 200 250
0

2

4

6

8

S
O

C
 [k

W
h]

Favor low

50 100 150 200 250
0

2

4

6

8

S
O

C
 [k

W
h]

Null−strategy

50 100 150 200 250
0

2

4

6

8

Timestep

S
O

C
 [k

W
h]

Favor high

Figure 17: SOC curves using three different charging functions. The SOC drops
rapidly in the Figure because all the energy the car will use during its trip is reduced
at the departure timestep. This is done in order to facilitate computation.

This means that the maximum charging power supported by the battery in
kilowatts is

P = y
m / 60

(7)

where y is the capacity in kilowatt-hours and m ∈ {30,60,120,240,480}. Here
it is assumed that 50 % of the cars have 6 kWh batteries and 50 % have 2
kWh batteries. The results are plotted in Figure 20. It is seen that, even
after using a lower charging power for smaller batteries, it is more effective
to favor the smaller batteries.
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Figure 18: Electric kilometers using
strategies z1, z2 and z3 with different
percentages of cars with large batteries
(i.e. big factors).

Figure 19: Electric kilometers using
strategies z4, z5 and z6 with different
recharge times (independent of capac-
ity). SOC is ignored, DCC is enabled,
big factor is 50 %.

However, smaller batteries tend to run out more quickly, which causes
them to have a lower SOC on average, which in turn grants them more
charging power bandwidth due to the form of the charging function. It will
now be checked if disabling SOC-based favoring will affect the results.

5.1.3 Strategies based on capacity only

Unless otherwise mentioned, it is from now on assumed that the maxi-
mum recharging power supported by the battery is calculated using (7),
with m = 60.

Three different strategies are tested:

z4 = y
z5 = 1/y
z6 = 1

(8)

Note that strategy z6 corresponds to the null-strategy. The results are
shown in Figure 20.

As is evident by the figure, ignoring the SOC and completely focusing on
the capacity does not affect the observation that favoring small capacities
leads to bigger electric kilometer gain. There is at least one more thing that
should be taken into consideration: the correlation between high battery
capacity and distance driven. For simplicity, a binary model is used for this
correlation. This means that the correlation is either enabled or disabled,
with no intermediate configurations.
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Figure 20: Comparison of the strategies that favor low-SOC cars (z1, z2, z3) and
strategies that ignore SOC (z4, z5, z6). Battery sizes are 2 kWh and 6 kWh with big
factor 50 %. DCC is disabled.

5.1.4 Distance-capacity correlation, DCC

Before this, no correlation was assumed between high battery capacity and
long travel distances; the cars that would have larger 6 kWh batteries were
chosen randomly. It is now checked if enabling distance-capacity correla-
tion, or DCC, would have any significant effect on the results. Correlation
is implemented as follows:

1. One simulation is run to obtain the total kilometers driven by each
car. Battery sizes are arbitrary at this point because they do not affect
the kilometers driven.

2. A certain fraction of the cars, given by the big factor, with the biggest
amount of total kilometers driven are selected to have a larger bat-
tery. The remaining cars will receive the smaller battery. Here the
big factor of 50 % is used.

3. The random number generator is reset so that car movement in the
next simulation will be identical to the car movement in the first sim-
ulation.

4. Simulation is run again with the new battery sizes.

The results are shown in Figure 19. Favoring low capacities still re-
mains the best strategy. Note that the electric kilometers increased in most
cases compared to Figure 20.

5.1.5 Optimal weight for the SOC

Three findings have been made:
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• When there are low-SOC and high-SOC cars with the same capacities,
it is often better to favor the low-SOC cars.

• When there are low-capacity and high-capacity cars and SOC is ig-
nored, it is better to favor the low-capacity cars.

• In some cases, it is better to favor the low-SOC cars and in some cases,
it is better to ignore SOC, as seen in Figure 20.

These findings suggest that there exists an optimal strategy between the
two extremes (only focus on SOC / only focus on capacity). With the charg-
ing function being of the form

z = exp(αx)/y (9)

we search for the value of weight parameter α that produces the most elec-
tric kilometers. The results are shown in Figure 21. The curves are labeled
using the abbreviation "RTtBFbc", where "RT" is a short for recharge time,
t is the recharge time in minutes, "BF" is a short for big factor and b is the
big factor in percents. "c", short for correlation is included in the label if
and only if DCC is enabled. Curves labeled with the prefix "null-" refer to
the case where the null-strategy is used.

It is seen that, without DCC, it is best to slightly favor the low-SOC cars.
With correlation, it is best to slightly favor the high-SOC cars. A possible
explanation for this reversal is that, due to the correlation, the cars with
high capacity are more likely to travel long distances and due to the high
capacity, their normalized SOC is expected to be high at the workplace.
Note that this is not contradictory, as the large batteries are given to cars
with the longest total travel length, not the longest trip length from home
to work. Because most of the travelling occurs on the way home, these cars
should be favored slightly.

When DCC is enabled, the null-strategy kilometers are exceeded only
with big factor 50 %. With big factors 25 % and 10 % the results are worse
than with no strategy at all. It would seem that this form for the charging
function is impractical when DCC exists.

From Figure 21 it can also be seen that:

1. The electric kilometers approach nearly asymptotically a certain value
when |α|→∞.

2. The global optimum is always near zero or at α = −∞. The global
minimum is always at α=+∞.

3. The difference between the values at α=±∞ decreases when distance-
capacity correlation is included.

4. Increasing the amount of cars with big batteries increases the differ-
ence between the asymptote values at α=±∞.

5. The global maximum seems to be on the positive side only when the
correlation is included.
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Figure 21: Electric kilometers as a function of weight of SOC α using the charging function in (9)
with different cases. The right-hand figure is a zoomed-in version of the left. For label explanations,
see section 5.1.5.
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The first result is sensible, because both the amount of electricity that
can be wasted by excessively favoring low-priority cars and the energy that
can be used to move the cars are upper-bound.

Favoring high-SOC cars too much rapidly increases the amount of wasted
energy. Favoring low-SOC too much is safer because of the reduced proba-
bility of bandwidth being hogged from high-priority cars.

The intuitive explanation for the third result is that, because the dif-
ference between the two asymptote values is caused by low-priority cars
hogging the bandwidth from high-priority cars, the priority difference is
decreased by the introduction of DCC.

With more total capacity, there are more possibilities of hogging the
charging bandwidth from high-priority cars and (to some extent) more pos-
sibilities to increase the electric kilometers. This explains the fourth result.

The fifth results is explained by the fact that increasing the correlation
decreases the probability of hogging bandwidth from high-priority cars. Fa-
voring high-capacity cars too much, however, results in great electric kilo-
meter losses.

To rule out the possibility that the electric kilometer peak is caused
by having two different capacities (2 kWh and 6 kWh) in the system, a
simulation was run with big factor set to zero i.e. a simulation where all
the cars had 2 kWh batteries. The results are shown in Figure 22, from
which we see that the peak is still present.

When this local maximum is also the global maximum, it follows that it
is possible to favor the low-SOC cars too much. If this were not the case,
the global maximum would always be at α=−∞, because this implies that
all of the available power is first given to the car with the lowest SOC, or
several cars if they have the same lowest SOC.

A sensitivity analysis was performed for these results by changing the
recharge time and the capacity of the big battery. This analysis is discussed
in section 5.1.6.

5.1.6 Sensitivity analysis

Recharge time was decreased from 60 min to 30 min and increased to 120
min in the case where 50 % of the cars had 6 kWh batteries, with no DCC.
The results are shown in Figure 23. The main difference is that the elec-
tric kilometer curve is shifted downwards when recharge time is increased
and upwards when it is decreased. The shift (both up and down) is more
pronounced on the positive side.

The large battery size was adjusted from 6 kWh to 4 kWh and 10 kWh
so that the ratio between the big capacity and small capacity changed from
3:1 to 2:1 and 4:1. The results are shown in Figure 24. Besides the obvious
increase in electric kilometers (which is upper-bound, as seen from Figure
1), it is seen that the drop near α = 0 is amplified when the large battery
capacity increases. The reason for this is that the upper bound for wasted
electricity is shifted upwards i.e. it is possible to hog more bandwidth from
the high-priority cars if a bad strategy is used.
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Figure 22: Electric kilometers as a function of weight of SOC α using the charging
function in (9). Recharge time is 60 minutes, big factor is 0 %. The right-hand figure is a
zoomed-in version of the left.

Figure 23: Sensitivity analysis for the
charging function in (9), recharge time vary-
ing between 30 to 120 minutes. For label ex-
planations, see section 5.1.5.

Figure 24: Sensitivity analysis for the
charging function in (9), large battery ca-
pacity varying between 4 (label ending with
"B4") and 10 kWh (label ending with "B10").
For additional label explanations, see section
5.1.5.
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5.1.7 Energy-based strategies

Until this point, the (normalized) SOC and capacity have been kept sepa-
rate from each other in the sense that their respective variables, x and y,
have been separate in the control functions used thus far. However, it is also
possible to combine them together as multiplying them yields the amount
of energy E that can be extracted from the battery in kilowatt-hours. Ex-
periments were made with the following strategy:

z = exp(αxy)= exp(αE) (10)

with different values of weight parameter α. The results are shown in Fig-
ure 25, where the labels beginning with "E." refer to the energy-based strat-
egy. The sensitivity of electric kilometers with respect to the weight pa-
rameter is clearly greater in the energy-based approach. This is expected,
because the range of the value in the argument of the exponent function is
increased from [0,1] to [0,6], the large battery capacity being 6 kWh.

In this figure, when using the energy-based approach the maximum is
located in both correlated and non-correlated cases on the negative side of
the x-axis while in the SOC and capacity-based approach the maximum is
on the left side in the non-correlated case and (sometimes) on the right side
in the correlated case. This raises the question: can the maximum occur
with positive values of α when the charging function is energy-based? To
answer this, a case where there was a very low probability of giving too
much bandwidth for high-energy cars was chosen: the case where 10 % of
the cars had 6 kWh batteries, with travel distance-capacity correlation. The
results are shown in 26. The maximum clearly occurs on the positive side
of the x-axis and thus the possibility that the positive α-maxima exist only
when using SOC and capacity-based charging functions can be ruled out.

Because the left plateau in RT60BF50 is higher in the energy-based
approach, it would seem that when there is no travel distance-capacity cor-
relation, it is better to use the energy-based charging function. To check if
this hypothesis holds, a simulation of RT60BF10 with both approaches was
run. The results are shown in Figure 27. It is seen that the energy-based
approach fares better on the negative side of the x-axis.

In all four cases (RT60BF10/c and RT60BF50/c), the energy-based charg-
ing function yielded greater maximum electric kilometers, suggesting that
this form is closer to the optimal form for the charging function.

5.1.8 Linear combination of SOC and capacity in the argument of
the exponential function

Experiments were made with the following charging function:

z = exp
(
λx+ηy

)
(11)

where λ is the weight of SOC and η is the weight of capacity. Battery ca-
pacities were set to 2 kWh and 6 kWh with big factor 50 %. The electric
kilometers with different λ and η are shown in Figure 28, along with the
electric kilometers obtained using the null-strategy. It is seen that in the
case with no DCC, both λ and η should be negative to obtain more electric
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Figure 25: Electric kilometers as a function of parameter α using the charging
functions (9) and (10). For label explanations, see sections 5.1.5 and 5.1.7.

Figure 26: Electric kilometers as a function
of parameter α using the charging functions
in (9) and (10). For label explanations, see
sections 5.1.5 and 5.1.7.

Figure 27: Electric kilometers as a function
of parameter α using the charging functions
in (9) and (10). For label explanations, see
sections 5.1.5 and 5.1.7.
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kilometers. Setting both positive is counterproductive, as we would then do
worse than with the null-strategy. To obtain the most electric kilometers
with this strategy in the case with no DCC, both λ and η should be set to a
high value, to around λ = η = −50. The gain compared to the null-strategy
case is around 4600 km.

With DCC enabled, a local maximum emerges. The optimal value of λ
is dependent on η, and vice versa. The relationship of the two is shown
in Figure 29. With this resolution and configuration, the optimal values
are λ =−1 and η =−0.1. Using these weights the gain is only 575 km com-
pared to the null-strategy case. Thus, as before, enabling DCC reduces the
effectiveness of the strategy.

5.1.9 Linear charging function

The charging functions used thus far have all employed the exponential
function. Experiments will now be made on the following, linear charging
function:

z = ŷ− xy+α(1− x)+βy (12)

where ŷ is the biggest capacity in the system (6 kWh), x and y are as before
and α,β> 0 are weight parameters. The small capacity is again 2 kWh. xy
equals the available energy E in the battery. Note that because of ŷ the
charging function can never attain negative values.

The simulation was run using this charging function with different weight
parameters α and β, with and without DCC. The results are seen in Figure
30.

In the case with no DCC, it seems that increasing both α and β reduces
the electric kilometers. If this is the case, both weight parameters should
be set to zero for maximal utility. The utility gain compared to the null-
strategy is then around 4400 km.

If DCC is enabled, the situation changes: we see that there exists a
positive optimal value for the weight of capacity β that is dependent on the
weight of SOC deficit α. The electric kilometer peak is shifted to the right
when α is increased. This is because a larger β is required to balance the
increased influence of α. However, it seems that the global optimum cannot
be attained with positive values of α due to bad 1:α:β -ratio. Maximum
utility is gained with weights α = 0 and β = 0.2, but this is only around
440 km larger compared to the null-strategy case.

The peak is present, though smaller in height, even with very large
values for the weight of SOC deficit (α = 10000). It would seem that the
peak cannot be eliminated using finite values for this parameter.

5.2 Predictive strategies
Until this point, the strategies we have used have relied only on the knowl-
edge of the current SOC and capacity. Now two new variables are intro-
duced, the stationary time T, which is the time of departure from the cur-
rent location minus current time and the next free distance D, the distance
the car will travel between leaving the current node and reconnecting with
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Figure 28: Electric kilometers with different weight of SOC λ and weight of capacity η using
the charging function in (11), with and without DCC. Battery capacities are 2 kWh and 5
kWh, big factor is 50 %. The curve labeled "null" shows the amount of electric kilometers
obtained using the null-strategy.
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Figure 29: Optimal values of weight of SOC λ that maximize the electric kilometers
as a function of weight of capacity η, extracted from Figure 28 (the case with DCC).
Also showing the electric kilometers obtained with optimal values of λ.

Figure 30: Electric kilometers with different weights of normalized SOC deficit α and
capacity β using the linear charging function in (12), with and without DCC. Recharge time
is 60 minutes, big factor is 50 %. Small capacity is 2 kWh, big capacity is 6 kWh. The curve
labeled "null" shows the amount of electric kilometers obtained using the null-strategy.
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the grid. For simplicity, the energy-based approach will be used in this
section.

For the simulations, the exact prediction data is obtained by repeating
the same simulated day as explained in section 5.1.4. A potential source
of information in the real life is the car fleet itself. If the car is sufficiently
advanced, it can collect travel data. It can, for example, be able to give
the distribution of the total travel distance from workplace to home or the
distribution of the stationary time at the workplace. It is possible that the
car uses GPS/WLAN and/or time to figure out when it’s at the workplace or
that the owner will give this information manually. A proposal for obtaining
a prediction for the next free distance at the workplace is given in A.4.

5.2.1 Prediction error

Both the stationary time and the next free distance are known exactly from
previous simulations, so an error term ε is introduced to represent inac-
curacy in the prediction. This makes the stationary time T and next free
distance D take the following form:

T =max(T0 +εT ,0)
D =max(D0 +εD ,0)

(13)

where T0 and D0 are the exactly known stationary time in timesteps and
next free distance in kilometers, respectively. The error terms εT and εD
are:

εT = δσT rT

εD = δσD rD
(14)

where δ ≥ 0, the prediction error, is a free parameter to allow for the easy
manipulation of the inaccuracy, σ is a constant to represent the standard
deviation of the error and r is a normally distributed random number5 with
mean 0 and variance 1. We chose σT = 12, which corresponds to one hour,
and σD = 5, corresponding to 5 km.

T and D are updated each timestep so that if we pass the predicted
departure timestep, the program will continue assuming that the car will
leave during the current timestep, until the car actually leaves the node.

5.2.2 Implementation

Intuitively, the charging function should account for the stationary time,
energy and next free distance in the following way:

• If stationary time is small, attempt to increase charging power. If
stationary time is large, attempt to decrease charging power.

• If energy is low, attempt to increase charging power. If energy is high,
attempt to decrease charging power.

5r should be picked from a new random number stream so that it doesn’t affect the move-
ment of cars.
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• If next free distance is small, attempt to decrease charging power. If
next free distance is large, attempt to increase charging power.

If the next free distance D is known exactly i.e. prediction error is zero,
the current energy E is redundant as we now know the actual required
energy

Ě = Dc−E (15)

where c is the electricity consumption in kWh/km. However, because in
reality the next free distance is often not known exactly (δ> 0), the term αE
should be kept in the argument of the exponent function.

To implement stationary time T and next free distance D, the charging
function should take a form where a large T > 0 decreases the bandwidth
and large D > 0 increases the bandwidth:

z(E,D,2T, ...)< z(E,D,T, ...)

z(E,2D,T, ...)> z(E,D,T, ...)
(16)

A function that satisfies (16) is

z = exp(αE)exp(βĚ)/exp(γT)

= exp
(
αE+β(Dc−E)−γT

) (17)

where β,γ > 0 are weight parameters. With this charging function, it is
possible to conveniently study the cases where the information about sta-
tionary time or next free distance should have no effect on the charging by
setting either β or γ to zero. By setting both weights β= γ= 0, this function
reduces to the function in (10).

For simplicity, we are going to first study the effect of weight of sta-
tionary time γ together with prediction error δ (so that weight of next free
distance β= 0), then the effects of β together with δ (so that γ= 0) and finally
all three together. It is assumed that the weight of energy α=−1, because,
in most cases, more electric kilometers were gained with small negative
values for this parameter.

5.2.3 Effect of stationary time

Simulations were run with five different values for prediction error δ and
several values of weight of stationary time γ with weight of energy α = −1
and weight of next free distance β= 0. The results are shown in Figure 31.
Increasing the error in stationary time seems to bring the electric kilome-
ter curve asymptotically towards a horizontal line, but with a peak at γ= 0.
With greater precision for the prediction it is possible to achieve greater
electric kilometer gains. This also makes it possible to achieve greater
losses with negative (counterproductive) values for the weight parameter.
Note how all the curves travel through the same point at γ= 0. This is be-
cause the prediction error only has an effect when the prediction is used.
Also, note how a global optimum emerges at γ= 0 when the error increases
beyond a certain point. A maximum at γ= 0 implies that the best approach
is to ignore the prediction for stationary time completely. Note that this
maximum is not at 0 % NSCI due to weight of energy α being nonzero.
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Figure 31: Electric kilometers and NSCI with different weight of stationary time γ and
prediction error δ using the charging function in (17). Weight of energy α=−1, weight of
next free distance prediction β= 0, recharge time is 60 min, big factor is 0 %. Some data
points have been excluded due to corruption from round-off errors.

In order to determine the limit for the error δ beyond which the station-
ary time prediction is not accurate enough to be useful, a simulation was
run with the same parameters as in Figure 24, but with the weight of the
prediction γ ranging between [−0.02,0.02].

According to Figure 32, when the prediction error δ exceeds the value 9,
it is best to ignore stationary time and set the weight of the prediction to
zero (γ = 0). This corresponds to having a normally distributed error with
standard deviation larger than 9 hours.

To study the effects of weight of stationary time γ in an environment
with different battery capacities, a simulation was run with 2 kWh and 6
kWh batteries using big factor 50 %, with and without DCC. The results
are shown in Figure 33. It seems that with DCC γ has a smaller effect
on the electric kilometer count, possibly due to the decrease in the priority
differences as suggested in section 5.1.5.

5.2.4 Effect of next free distance

In order to study the effect of the required energy term β(Dc − E) in the
charging function exponent, we disable the use of the prediction for sta-
tionary time by setting γ= 0, while keeping the weight of energy at α=−1.
The simulation was run with different weights β and errors δ.

The results are shown in Figure 34. It is immediately seen that the
NSCI curves resemble qualitatively the curves in Figure 31.
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Figure 32: Electric kilometers and NSCI with different weight of stationary time
prediction γ and prediction error δ using the charging function in (17).

It is possible to ignore energy E by setting its weight α = 0, and thus
focus completely on the required energy (Dc−E). When there is no error
(δ= 0) and the prediction weight β is sufficiently large, setting the weight of
energy α= 0 increases the electric kilometers, see Figure 35. This is because
the amount of energy the car requires is now known exactly. Having the
absolute energy term only throws the charging function off. However, when
the error is large (δ = 10), having a negative weight of energy α increases
the amount of electric kilometers.

At a glance it would seem that these curves also have an optimum at
zero prediction weight (β= 0) when the prediction error gets large enough.
However, this is not the case, for the global optimum is on the positive side,
at roughly β= 0.02. In fact, there are two turning points:

1. the prediction for next free distance gets so inaccurate that it is best
not to increase β from 0.02.

2. the prediction for next free distance gets so inaccurate that it is best
to ignore the next free distance completely by setting β= 0

The first of these is reached when prediction error δ> 9 (see Figure 36). This
corresponds to having an error with the standard deviation larger than 45
km. The global optimum is then located at around β = 0.02. The second
turning point is reached when δ > 21 (see Figure 37). This corresponds to
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Figure 33: Electric kilometers as a function of weight of stationary time prediction
γ using the charging function in (17), with different prediction error δ, with and
without DCC. Weight of energy α=−1, weight of next free distance β= 0. For label
explanations, see section 5.1.5.

standard deviation larger than 105 km. The global optimum is then shifted
to β= 0, where the prediction is completely ignored.

5.2.5 Using both stationary time and next free distance

It will now be checked how these two different predictions affect when both
are enabled simultaneously. For simplicity, we assumed that there was no
error in either prediction (δ= 0). If there is no error in the prediction for the
required energy, we can set the weight of energy α to zero, as explained in
section 5.2.4. The results are shown in Figure 39.

Apparently, the electric kilometer curves converge toward a common
value when the absolute value of β is very large. If β is much larger than γ

(and α), the prediction for the next free distance dominates the value of the
charging function, causing the stationary time prediction to have less effect.
Electric kilometers will then decrease, because we are throwing data away
by undermining the usefulness of the prediction for the stationary time.

When the weight of stationary time is negative (γ < 0), it is actually
advantageous to undermine the stationary time prediction by setting

∣∣β∣∣À
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Figure 34: Electric kilometers and NSCI with different weight of next free distance predic-
tion β, weight of energy α and prediction error δ using the charging function in (17). Weight
of stationary time prediction γ= 0, stationary time error multiplier σT = 12, recharge time is
60 min, big factor is 0 %.
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Figure 35: Zoomed-in version of Figure 34.
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Figure 36: The first turning point. Elec-
tric kilometers with different weight of next
free distance prediction β and prediction er-
ror δ using the charging function in (17).
Weight of energy α = −1, weight of station-
ary time prediction γ = 0, recharge time is
60 min, big factor is 0 %.

−0.02 −0.01 0 0.01 0.02
1.4115

1.412

1.4125

1.413

1.4135

1.414

1.4145
x 10

5

Weight of next free distance prediction (β)

E
le

ct
ric

 k
ilo

m
et

er
s

 

 

10
20
21
22
25

Prediction
error δ

Figure 37: The second turning point. Elec-
tric kilometers with different weight of next
free distance prediction β and prediction er-
ror δ using the charging function in (17).
Weight of energy α = −1, weight of station-
ary time prediction γ = 0, recharge time is
60 min, big factor is 0 %.

γ to obtain more electric kilometers for there is a global minimum at β= 0.
In practice, however, the weight of stationary time should never be less
than zero, as this would penalize the cars that will spend less time at the
node.

Increasing the weight of next free distance β seems to have a smaller
effect than increasing the weight of stationary time γ (see Table 1), which
seems to indicate that the prediction for stationary time is more useful than
the prediction for the next free distance. This does not imply that we should
ignore the latter, because it can increase the electric kilometers. When the
prediction error is low, both predictions should be used to maximize utility.

In order to obtain more evidence for the hypothesis that stationary time
is more useful than next free distance, the following two strategies were
tested:

zNFD = exp
(
β(Dc−E)

)
zST = exp(−γT)

(18)

which are simply the charging function in (17) with the weight of energy
α set to zero and the weights of next free distance and stationary time
(β and γ, respectively) set to zero alternatively. For additional data, both
the capacity and the workplace power factor were increased by 100 % and
reduced by 50 %. Thus the simulation was run in a total of nine different
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Table 1: Electric kilometer values from Figure 39.

γ= 0 γ= 0.5

β = 0 140 992 147 025
β = 0.5 142 119 147 518

scenarios for both charging functions. For simplicity, perfect predictions
were assumed (δ = 0). The electric kilometers for different coefficients are
shown in Figure 38. "Coefficient" refers to β when using the function zNFD
and to γ when using the function zST. These two cases are labeled in the
Figure as "NFD" and "ST", respectively.

It is seen that in eight of the nine scenarios, the greatest amount of
electric kilometers were obtained using the prediction for stationary time,
assuming optimal value for the coefficient. The scenario with capacity 1
kWh and workplace power factor 0.2 kW is ambiguous due to the electric
kilometers reaching the maximum as seen in Figure 16.

5.2.6 Balance between prediction and observed average

When the prediction is very inaccurate, it is reasonable to use the observed
average instead in the calculations. But what happens if the prediction is
only moderately inaccurate? To study this problem in the stationary time
case, the following charging function was experimented with:

z = ŷ−E
Tw+ T̄(1−w)+1

(19)

where ŷ, E and T are the maximum capacity in the system, energy of the
battery and stationary time, respectively, and

T̄ =max(L̄− t,0) (20)

where L̄ is the average work leaving timestep6 and t is the current timestep.
w sets the preference of prediction versus average. If w = 0, only the average
is used, and if w = 1, only the prediction is used.

Null-strategy capacities with different prediction errors and battery ca-
pacities are shown in Figure 40. It is seen that with low prediction error,
more electric kilometers are gained by setting w = 1 i.e. ignoring the av-
erage and giving complete focus on the prediction. With large prediction
error, we should set w = 0, ignoring the prediction and giving the focus on
the average. With intermediate prediction error, there is an electric kilo-
meter maximum with 0 < w < 1. This result is sensible, because accurate
predictions (ones with low error) divulge useful information about which
car to favor. When the error gets worse, it is possible to safeguard against
inaccurate predictions by gravitating the prediction towards the observed
average by reducing the value of w. When the error gets too large, the pre-
dictions give mostly misinformation. In that case, the predictions should be
ignored altogether by setting w = 0.

6When calculating this average, those cars that do not go to work are simply ignored.
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Figure 38: Electric kilometers with different coefficients of prediction using the charging functions in
(18), with three different battery capacities (1 kWh, 2 kWh and 4 kWh) and three different workplace
power factors (0.05 kW, 0.1 kW and 0.2 kW per inhabitant. For label explanations, see section 5.2.5.
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Figure 39: Electric kilometers with different weight of next free distance prediction
β and weight of stationary time prediction γ using the charging function in (17), with
perfect prediction accuracy (δ= 0). Weight of energy α= 0, recharge time is 60 min,
big factor is 0 %.

Note how with capacity of 1 kWh, the null-strategy capacity starts below
1 kWh with the prediction ignored (w = 0), whereas with larger capacities
the null-strategy capacity starts above the current capacity. It seems that
the energy term ( ŷ− E) throws off the strategy with very low capacities,
because without this term, i.e. using the charging function

z− = 1
Tw+ T̄(1−w)+1

(21)

the null-strategy capacity at w = 0 is larger than 1 kWh, as seen in Figure
41. All the lines in this picture start at exactly 1 kWh null-strategy capacity,
because the average work leaving timestep L̄ is same for all cars and thus
all cars receive the same weight, which, by definition, corresponds to the
null-strategy. There is a slight decay in NSCI near w = 1 in the cases where
the error is low, δ= 0 and δ= 2. This is presumably due to off-by-one errors
when calculating the stationary time from the location data.
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Figure 40: Electric kilometers and NSCI with different parameter w and prediction error δ using the charging
function in (19), with four different battery capacities (1 kWh, 2 kWh, 5 kWh and 10 kWh).
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Figure 41: Electric kilometers and NSCI with different parameter w and prediction
error δ using the charging function in (21) with the capacity being 1 kWh.
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5.3 Effect of workplace charging strategies
To conclude the workplace strategy discussion, the utility gained from the
smart workplace charging is now estimated. The strategy in Equation (17)
will be used, as this strategy seems the most promising. The workplace
power factor is kept at 0.1 kW.

Because the next free distance prediction does not seem to be as impor-
tant as the stationary time prediction, we set its weight β = 0. The weight
of stationary time γ is set to 1, for this seems appealing according to Figure
31. The charging function then takes the form

z = exp(αE−T) (22)

For simplicity, it is assumed that there is no error in the stationary time
prediction.

The electric kilometers with different capacities (big factor 0 %) and
weight of energy α are shown in Figure 42. The electric kilometers obtained
using the null-strategy, labeled "null", and those obtained by removing the
power limitation at workplace nodes 7, labeled "full", are also plotted in this
figure. Apparently the capacity of the simulated cars is significant when de-
termining the effectiveness of any strategy. This is seen in the difference of
full kilometers and the null kilometers with each capacity. With low capaci-
ties, the strategy has no room to operate. With high capacities, the strategy
does not affect the electric kilometers 8 as the cars will have enough energy
for the home trip regardless.

The difference of full and null kilometers are plotted, along with the
"strategy" (labeled "strat") kilometers i.e. kilometers obtained with the power
limitation, but using the strategy in (22) with optimized weight of energy
α, in Figure 43. Their ratio and the corresponding NSCI values are also
shown. Full kilometers minus null kilometers ("full-null") peaks with ca-
pacity 2.5 kWh. With this capacity, the charging strategy has the most
potential. Strategy kilometers minus null kilometers ("strat-null") in both
figures shows how much utility is gained from the charging function. It is
seen that, with this charging function, the most utility, 9180 km, is gained
with capacity 3 kWh, corresponding to 11 % NSCI.

7This gives an upper bound for the electric kilometers obtained using any strategy. How-
ever, this is not the lowest upper bound.

8Again assuming that there is only recharging and no discharging.
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Figure 42: Electric kilometers with different weight of energy α and capacities 1-7
kWh using the charging function in (22). Recharge time is 60 min, big factor is 0 %.
For label explanations, see section 5.3.
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Figure 43: Electric kilometer differences and NSCI extracted from Figure 42. For
label explanations, see section 5.3.
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6 Home recharging
In this section a method for generating nearly arbitrary charging load pro-
files is introduced. This method is used to fill the night-time consump-
tion slump in a near-optimal way with a sine-shaped load profile. This
sine-shaped load profile is also used to calculate an estimate on how much
the standard deviation of power consumption can be reduced by the home
recharging on annual scale, with different traffic electrification percent-
ages.

6.1 Weighted random recharging, WRR
Our ultimate goal is to reduce the standard deviation of power by filling the
night slump in the base electric power consumption (see Figure 45) using
the recharging load of PHEVs. The method used to achieve this is called
weighted random recharging or WRR.

The principal idea behind WRR is that each car may recharge its battery
with its maximum supported power, but the timeframe of recharging, or
recharging interval, is obtained by sampling a certain distribution. It would
be sensible to design this distribution so that it causes the total recharging
power profile to fit the night slump as well as possible.

6.1.1 Time intervals

The simulated day is divided into two sections, daytime and night-time.
During the daytime, the charging function is used normally as in section
5. During the night-time, all recharging is forbidden except during the per-
sonal recharging interval given by the distribution sample. Night-time is
defined as the time interval between timesteps tNS = 175 (night-time start)
and tNE = 73 (night-time end)9. It is assumed that during night-time the
maximum power supported by each home node is infinite.

When a car arrives home with energy deficit D (in kilowatt-hours), it
is given its recharging interval midpoint. When calculating the recharging
interval, it is assumed that the car is no longer driven for the rest of the
day i.e. D remains constant until the recharging interval is reached. If the
midpoint is timestep tmid, the recharging interval is defined as [tstart, tend],
where

tstart := floor
[

tmid −
D
2P

3600
dt

]
tend := ceil

[
tmid +

D
2P

3600
dt

] (23)

where P is the maximum charging power supported by the battery in kilo-
watts, dt is the length of the timestep in seconds and floor and ceil are
round-down and round-up operators, respectively. It may be that the home
arrival timestep is greater than tstart. If this happens, the car is simply not
fully recharged that night.

9Night-time end is smaller than night-time start because the simulation jumps back to
timestep 1 when timestep 288 ends.
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This assigns an energy "block" of roughly size P × (tend − tstart) for each
car10. These blocks are then used to fill the nighttime power consumption
slump. Because the electricity consumption slump resembles a sine curve,
we are going to obtain the midpoints from a sine-shaped distribution. For
details, see section A.2.

6.1.2 Obtaining midpoints

The samples r from the sine-shaped distribution have mean zero and vari-
ance of roughly 0.047. In order to convert these samples to midpoints, the
midpoint of the resulting distribution, the peak position tPP is added with
multiplier σP:

tmid := tPP + rσP (24)

Using this method, a roughly sine-shaped power consumption curve is ob-
tained as seen in Figure 44. Because the battery energy deficits vary, the
curve has both a head and a tail. Note how there is a small amount of
home recharging before all recharging is suddenly stopped when the WRR
interval is reached.

6.1.3 Optimizing parameters

The parameters that form the WRR consumption profile are now optimized
so that it would fit the night consumption pit in near-optimal way. The opti-
mal parameters are defined so that they, when used in the WRR, minimize
the standard deviation of the total power consumption profile. We assume
that there are 240 000 cars.

The optimal position t̄1 for the peak is searched first with σP = 50. We
then search for the optimal multiplier σ̄1 with tPP = t̄1 using the precision
of ∆σ̄P = 10 and then optimize tPP once more with σP = σ̄1

11. After this the
global optimum should be sufficiently close.

The first sub-optimization yielded t̄1 = 14 (see Figures 46 and 47), the
second σ̄1 = 110 and the final t̄2 = 7, making the near-optimal parameters
tPP = 7 and σP = 110. Figure 49 shows how the near-optimized WRR fills
the consumption pit. Figure 48 shows how standard deviation is decreased
when PHEV recharging power is added to the base consumption profile.

6.2 Reducing standard deviation of electric power con-
sumption on annual scale

The total amount of kilometers driven by car12 in Finland in 2010 was
46.2 billion [25]. This is around 127 million kilometers per day on aver-
age. If those kilometers were driven using electricity, the daily electricity
consumption would increase by 25.3 GWh on average (assuming electricity

10The block size may vary if the car is driven after it arrives home or if it receives a bad
midpoint.

11This is the one-at-a-time coordinate-wise optimization method.
12Excluding lorries, vans and buses.
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Figure 44: Recharging profile of 20 000 cars scaled to 240 000. Workplace power
factor is 0.1 kW, recharging time is 60 min. Battery capacity is 7 kWh. Multiplier
σP = 50, peak position tPP= 288, night-time start tNS = 175, night-time end tNE =
361. r is picked from a sine-shaped distribution.

Figure 45: Same as Figure 44, but with base electricity consumption added.

consumption of 200 Wh/km). It is now checked how this additional con-
sumption could decrease the yearly standard deviation of power. The sine-
shaped profile in Figure 44 (referred to from now on as recharging profile) is
scaled so that its integral with respect to time (i.e. energy) equals (E×p/100),
where E is the aforementioned 25.3 GWh and p is the percentage of those
kilometers driven using electricity, or the electrification percentage.

For simplicity, it is assumed that each day the integral of the recharging
profile (the total amount of energy recharged) remains the same. It is also
assumed that the position of the recharging profile can be chosen freely
between 16:00 the current day and 16:00 the next day, regardless of the
population of the home nodes. Also, in this section, 1-minute timesteps are
used in place of the 5-minute timesteps used previously.
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Figure 46: Searching for the optimal peak posi-
tion. Deviation from the average power consump-
tion as a function of time with different peak posi-
tions.

Figure 47: Searching for the op-
timal peak position. Standard de-
viation of total power with differ-
ent peak positions.

Figure 48: Deviation from average total power. Comparing base consumption pro-
file (no recharging) and base consumption profile with the near-optimal WRR profile
added.

6.2.1 Optimization

Two different cases will be studied. In the first one, we search for the year-
optimal full width at half maximum (FWHM) and peak position for the
recharging profile. These same parameters are used each night to place the
recharging profile into the night slump, which means that on some nights
the recharging profile may be badly shaped with respect to the base load.
This case is called the whole-year-at-once-case (WY1).

Day-optimal FWHM and peak position for the recharging profile are
searched in the second case. The optimization is thus carried out each
simulated day, reducing the number of occasions where the recharging pro-
file is badly shaped for the night slump. This case is called the each-day-
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Figure 49: Near-optimal WRR consumption profile, with and without base con-
sumption.

separately-case (EDS). When searching for the optimal FWHM, the profile
is manipulated in such a way that the operation does not change the area
(energy). For more details on the optimization in the EDS case, see section
A.3.

Working day is defined here as as a day that is not Saturday or Sunday.
In 2010, there were 261 working days. In this optimization, only working
days are considered. This implies that, in the evaluation of the objective
function, the standard deviation of power, all days other than working days
are skipped. Additionally, the first working day (Friday, first day of Jan-
uary) is skipped in order to simplify the calculations.

6.2.2 Results

The resulting yearly standard deviation with respect to p is shown in Fig-
ure 50 for both cases. As expected, when optimizing the parameters for
each day separately, a lower standard deviation for the total power can be
reached. It is also seen that there is an optimal value (p = 39 in the EDS
case) beyond which the added electrification of traffic no longer lowers the
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Figure 50: Standard deviation of total power over the whole year with different
electrification percentages p in both optimization methods EDS (each day sepa-
rately) and WY1 (whole year at once). Also showing the cubic polynomial fits to
the data.

standard deviation, but increases it. This is due to the recharging load
overflowing from the night slump. Using this optimal value for p gives a
decrease of 6.3 % in the yearly standard deviation and a decrease of 61 % in
the mean of daily standard deviation. A third-degree polynomial, shown in
the figure as a continuous line, was fitted to both of these data point sets.

The average of optimal time shift and FWHM for both cases are shown
in Figures 52 and 53. The first 10 working days with near-optimal recharg-
ing added in both cases are shown in Figures 54 and 55. A histogram of
the amount of days with a certain standard deviation of power in the near-
optimal EDS case is shown in Figure 51. Note how the average of optimal
time shift curve in the WY1-case is intermittent unlike the EDS-curve. This
is because the WY1-case gives the same parameters for each day, prevent-
ing the averaging from smoothing out the curve.
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Figure 51: Histogram of the amount of days with a certain standard deviation of
power with electrification percentage p = 39 and near-optimal recharging profiles in
the EDS (each day separately) case before adding PHEV load (red) and after adding
PHEV load (blue).

Figure 52: Average of optimal time shift with
different electrification percentages p.

Figure 53: Average of optimal FWHM with
different electrification percentages p.
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Figure 54: Power consumption on the first 10 working days with electrification percentage
p = 39 and near-optimal recharging profiles in the WY1 (whole year at once) case.

Figure 55: Power consumption on the first 10 working days with electrification percentage
p = 39 and near-optimal recharging profiles EDS (each day separately) case.
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7 Conclusions
In this thesis a model for simulating the movement and charging of PHEVs
was used in order to study smart charging. Smart charging was modelled
using a charging function that allocates the available power to the con-
nected vehicles. Our results are as follows.

In the case where we use non-predictive charging strategies, if there is
no distance-capacity correlation (DCC), it seems that a good strategy is to
favor the low-SOC cars instead of the high-SOC cars. This favoring can
sometimes be excessive, however, as there may be a global maximum for
the electric kilometers using a finite value of the favoring coefficient. This
can be seen in Figure 21, with the favoring coefficient being the coefficient
of SOC, α. Also with no DCC, low-capacity cars should be favored over
high-capacity cars, as seen in Figure 20.

When DCC is enabled, the effectiveness of the strategies diminished to
the point where it might actually be advantageous to use the null-strategy
(no strategy at all). It seems that enabling DCC provides enough intelli-
gence to make our strategies redundant.

In the case where we use predictive strategies, if the prediction accuracy
for the next free distance is insufficient, it is best to include the absolute en-
ergy term in the charging function. With accurate predictions, the absolute
energy term should be dropped, as seen in Figure 35. This result supports
the intuition that it is more important to know the energy that is needed
for the return trip than the amount of energy stored in the battery.

It seems that the prediction for the stationary time is more useful than
the prediction for the next free distance, see Figure 38. However, for maxi-
mal utility gain, both should be used when the predictions are sufficiently
accurate.

It is possible to safeguard against the utility loss caused by inaccurate
predictions by taking a linear combination of the prediction and the ob-
served average, as seen in Figure 40.

The effectiveness of any strategy is linked to the battery capacity, see
Figure 43. With capacity of 3 kWh, recharging power at workplace nodes
limited to 0.1 kW per inhabitant and using the charging function in (22),
it is possible to gain 9180 more electric kilometers compared to the null-
strategy, or 918 m per simulated car. The same amount of kilometers could
be gained by using the null-strategy, but increasing the capacity by 11 %,
to 3.33 kWh.

It was learned that the weighted random recharging (WRR) method can
be used to reduce the daily standard deviation of power consumption, as-
suming a sufficient amount of vehicles. In the case where the position of
the WRR recharging profile was optimized separately each day (EDS-case),
we saw that the greatest reduction in the standard deviation was obtained
with the traffic electrification of 39 %, as seen in Figure 50. This reduction
was 6.3 % for the whole year, while the mean of the daily reduction was
61 %.

During the course of making this thesis, several ideas for future work
and improvements were identified. These are explained in the following.

In this study only analytical charging functions were used. However,
we could use a table form for the charging function instead. This function
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could be optimized using machine learning and evolutionary optimization
algorithms.

Our control functions were chosen so that the node populations versus
time would look sensible. The control functions could be improved by ob-
taining real-life data and then tuning the parameters until we get a satis-
factory match between simulation and reality.

The fluctuations on the price of electricity were not modelled. This could
be implemented simply by modifying the power limitations according to the
price. For example, if the price of electricity doubles in some area of our
node network, it could halve the power factor at the affected nodes.

The prediction model used could be made more sophisticated. For ex-
ample, when the work leaving timestep for a car was passed, the program
continued to assume that the car would leave the node for all the subse-
quent timesteps. Instead, this prediction could be flagged as an inaccurate
one and some other charging function for the cars that have inaccurate pre-
dictions could be used.

Only 1-2 consecutive days and working days were simulated. We could
develop control functions for weekends and simulate longer time periods,
e.g. a single week to obtain more information and insight.

This model was used to simulate PHEVs and not EVs. If we want to
model EV traffic and charging, it is required to take the SOC into account
when deciding the next destination, for otherwise the car would run out
of electricity during the trip. This would make obtaining predictions more
difficult due to feedback issues. A model for traffic congestion could also be
included.

Accounting for the correlation between battery capacity and travelled
kilometers was greatly simplified in this thesis. There were only two cases,
DCC enabled and DCC disabled. If the correlation is used in a continuous
way instead, it would be possible to calculate how much of the utility ob-
tained using a given strategy could be replicated by introducing a certain
amount of correlation using the null-strategy. Also, the amount of available
capacities could be increased, as only a maximum of two different capacities
were used at any time.

Shopping and hobby nodes were assumed to offer no recharging service.
Recharging could be allowed at these nodes or some of these nodes in order
to see if the strategies are affected or if additional strategies are needed for
different types of nodes.

Due to the massive amount of input parameters for the simulation com-
bined with the curse of dimensionality, it was necessary to leave a great
many interesting parameter combinations unstudied. There is a lot of room
for additional experimentation.
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A Appendix

A.1 Generating the fed-up factor f

We would like the fed-up factor distribution to resemble a normal distri-
bution, but it is not possible use the normal distribution as it is, because
f needs to be in the interval [0,1]. This problem is solved by using the
following method:

1. Generate r, a normally distributed random number with mean 0.5
and variance 0.04.

2. If r < 0 or r > 1, go to step 1. Else, finish with f ← r.

A histogram of 100 000 samples from this algorithm is shown in Figure 56.
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Figure 56: Histogram of 100 000 samples from the fed-up factor generating algo-
rithm.

A.2 Random number from a sine distribution

The inverse-cumulative distribution function method of generating random
numbers is used here.

1. Generate x, a uniformly distributed random number between 0 and 1.

2. Calculate

r = arccos(1−2x)/π−1/2 (25)

Numbers r i generated this way follow a sine-shaped distribution, as seen
in Figure 57.
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Figure 57: Histogram of 1 000 000 samples from the sine-distributed random num-
ber generating algorithm.

A.3 EDS optimization algorithm
The algorithm in the EDS-case works as follows:

1. d ← 2

2. t ← timestep that corresponds to 4:00 of working day d

3. Find optimal θ = θ̄ and ∆t = ∆̄t for the recharging profile so that the
standard deviation in total power (base + recharging) in the timestep
interval {t−720, t+720} is minimized13. The search area is {0.1,2} for θ
and {−150,150} for ∆t. The search resolution is 0.02 for θ and 15 for ∆t.

4. Add the optimal recharging profile to the base power consumption so
that its peak position is t+∆t.

5. d ← d+1. If d = 262, end. Else, go to step 2.

A.4 Approximating the next free distance at workplace
The car’s current SOC can be used to extract an approximation for the min-
imum of the next free distance. This can be done under the following as-
sumptions:

• Car has just arrived to its workplace.

• Car has been fully recharged at home during the night.

• Car has taken the shortest route to its workplace and has not made
any stops on the way.

• Recharging is possible only at home and at the workplace.
13We are using 1-minute timesteps, so that 720 timesteps correspond to 12 hours.
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If the car’s current SOC in kilowatt-hours is SOC and its maximum SOC is
SOCmax, it is possible to calculate the energy it has used on the trip from
home to work:

E = SOCmax −SOC (26)

This is the minimum amount of energy the car will spend on its way back
home. By dividing E with the electricity consumption (kWh/km) we obtain
an approximation for the next free distance D.
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