

Electric Mobility Needs Smart Infrastructures

Raphael Giesecke

Fourth Sino-Finnish Innovativeness Forum
12 May 2011

Graduate School at Shenzhen, Tsinghua University

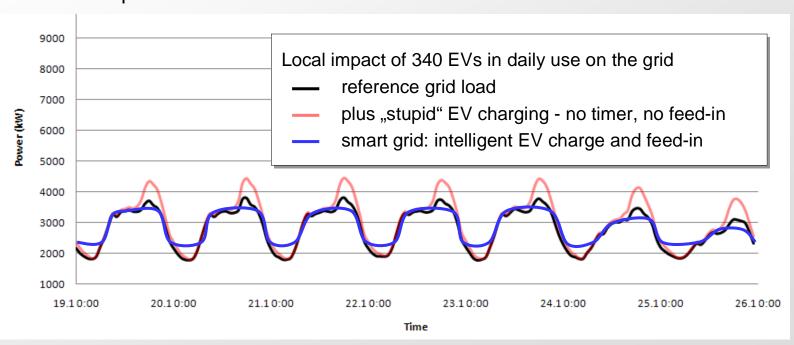
Introduction

- Sustainable communities including sustainable mobility?
- Most promising option:
 - Electric vehicles (EVs) and
 - plug-in hybrid electric vehicles (PHEVs)
- Are they clean and sustainable, and will they be affordable?
- Yes, if...
 - 1. EVs smartly integrated into grid
 - 2. charging infrastructure available and smart
 - 3. urban and environmental impact balanced
 - 4. e-mobility value network in place

Thousands of Buffer Batteries

- Disruptive paradigm change: cars can provide clean energy
 - Grid becomes smart and electric vehicles play active role
 - electrical, renewable energy can be **buffered**
 - thus local and distributed energy production is welcome at any time

- Smart grid project examples
 - International: Pecan Street Project (http://pecanstreetproject.org)
 - Helsinki: Kalasatama (https://www.helen.fi/pdf/Suvi10_hyvarinen.pdf)

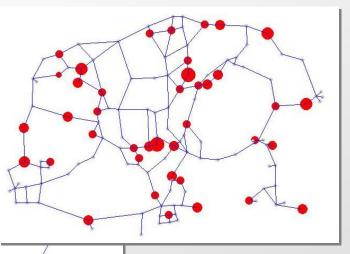

Less Peaks and Cleaner

Target

- Reduce peak loads: less CO₂ emission
- Use **renewable** energy when available
- Consume unused energy: especially nuclear power

Study impact on power supply grid

- Suburban areas (individual view and medium voltage feeder)
- Downtown areas


Helsinki Simulations

Research dimensions

- EV population/battery density
- Charging distribution
- EV charging loads

Feed-in

Charging loads

Charging types

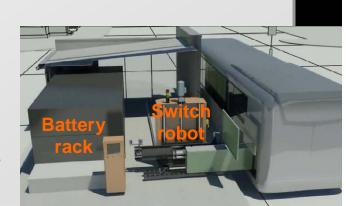
Intro

Charging Infrastructure

Research on individual EVs

- Slow/fast charging and its effects on grid & battery
- Charging in garages, parking lots, park-and-ride, kerbside, home and work
- Billing and metering and means of payment
- **Smart charging and feed-in rewards**

Research on public and delivery transport


- Trolley and battery (combined) buses
- Battery powered delivery vehicles

Battery switching

- Benefit: recharging time = today's refueling time
- Attractive for large EVs with batteries >100kWh
- "Battery rack" allows fast charging for standard EVs
- Car manufacturers show little interest in switching

IEC 61851-1 charging modes

- 230-400V 16A 3.7-11kW
- 400V 32A 13-22kW
- 690V 32-250A 22-300kW
- 4. 1000V DC 400A 400kW

Power Source Evaluation

Reference = Diesel bus	Transport fuel/power source versus Diesel alternative				
(4.5-5kWh/km), 250-300k€	Overhead (trolley)	Hydrogen	Battery		
Energy balance	+		++		
(consumption in kWh/km)	(1.8-2.5)	(3.9-6.4 - fuel cell)	(1.0-1.2)		
Volumetric storage density	++ +				
	(no special storage needed)				
Technological availability	0	-	-		
Range	++	0			
	(unlimited; restricted routes)	(similar distances to diesel)	(very limited)		
Additional infrastructure	-	-	-		
	(overhead lines etc.)	(storage; dispending)	(recharging; battery		
			swapping)		
Unit costs (x1000€)	-		-		
	450–750	805–2 410	383 (hybrid)		
Working as power	Not possible	Not considered	+		
resource			(supporting smart grid)		
Comfort and attractiveness					
Environmental issues					
N. 4 - 1 - 1 - 1 - 1	and national Disad automobile	Nie teel t Ael eelee e tt Nac'e			

Intro

Urban and Environmental Impact

Research on future urban mobility

- Why do humans yearn for mobility?
- Future role of the (individual) car?
- Emerging EVs and concepts?
- E-mobility effects on people's mobility...
- ...and on selection of transport means?

Environmental assessment

- over whole EV life cycle, including
- emission view on electric energy creation

Research on traffic and transport integration

- Urban traffic flows and travelling behaviour
- Data from Helsinki metropolitan area traffic survey
- Various scenarios for penetration speed of EVs
- Output: blueprint for local charging network

Industrial e-Mobility Value Chain

Maintenance and Life Cycle Services

Energy supplier

Energy distributor

Electricity market operator

Operative system integrator

Vehicle supplier

Nomadic charging SP*

End user application SP*

Charging infrastructure supplier

Battery supplier

Parking SP*

• Identification

- Metering
- Billing
- Battery information mediator

Charging information SP*

Mainly multi time earning

Mainly one time earning

*: SP = Service Provider

Intro 1. Grid View 2. Charging 3. Impact 4. Value chain 5. Opportunities Conclusion

Ideal EV Management System*

Context		System level	Optimisation aim	Number of EVs
	Regional power system	Layer IV	Support Frequency Stability	y Millions
	Distribution system	Layer III	Avoid peak loads	Thousands
Dyvine Control Charleson or Managem or	Local power system	Layer II	Support local power generation	Hundreds
	Fast charging station	Layer I	Provide safe and reliable charging	Tens
	User Smart	Control Terminal	Optimize charge and discharge schedule	One

*: In agreement with CEPRI Electrical Engineering and New Material Department

Selected Business Opportunities

In the mid term, market will become end-user driven

- end-users ask for clean and smart mobility,
- and they will be ready to pay

Nomadic charging service provider

- fuel station network
- supermarkets, shopping centres

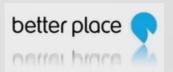
Parking service provider

today's slow charging can be extended in volume and speed

End user application service provider

- EVs most suitable for urban traffic (0 emissions)
- ideal for urban car sharing clubs and car rental agencies
- hotels and further real estate and utility providers will follow
- EVs ideal feeders for railway stations

Operative system integrator


combines potentially strongest opportunities and risks

Conclusion: e-Mobility Needs Smart Infrastructures

EV batteries offer opportunities for grid and sustainable mobility

- with intelligent, smart charging solutions,
- sufficient charging and feed-in possibilities,
- also in work places and especially on kerbsides.
- Battery racks should be multi-use and multi-feed.

Opportunities for real estate, construction and facilities management industry

- urban car sharing clubs and rental agencies
- hotels and railway station operators
- most interesting: operative system integrator

When linking EVs to sustainable communities and building

- Think holistic and allow complexity
- Think big and international
- Listen to stakeholders
- Find the business perspective: visit www.SIMBe.fi

